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Abstract: The aim of this paper is to exhibit the research on separation axioms in terms of nearly open sets viz 

p-open, s-open, α-open & β-open sets. It contains the topological property carried by respective ℘ -Tk spaces (℘  

=  p, s, α & β; k = 0,1,2) under the suitable nearly open mappings .  This paper also projects ℘ -R0 & ℘ -R1 

spaces where ℘ = p, s, α & β and related properties at a glance. In general, the ℘ -symmetry of a topological 

space for      ℘ = p, s, α & β has been included with interesting examples & results. 
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I. Introduction & Preliminaries: 
The weak forms of open sets in a topological space as semi-pre open & b-open sets were introduced by D. 

Andrijevic through the mathematical papers[1,2]. The concepts of generalized closed sets with the introduction 

of semi-pre opens were studied by Levine [12] and Njasted [14] investigated α-open sets and Mashour et. al. 

[13] introduced pre-open sets. The class of such sets is named as the class of  nearly open sets by Njasted[14]. 

After the works of Levine on semi-open sets, several mathematician turned their attention to the 

generalization of various concepts of topology by considering semi-open sets instead of open sets. When open 

sets are replaced by semi-open sets, new results were obtained. Consequently, many separation axioms have 

been formed and studied. 

The study of topological invariants is the prime objective of the topology. Keeping this in mind several 

authors invented new separation axioms. The presented paper is the overview of the common facts of this trend 

at a glance for researchers. 

Throughout this paper, spaces (X, T) and (Y,σ) (or simply X and Y) always mean topological spaces on 

which no separation axioms are assumed unless explicitly stated. The notions mentioned in 

[1,6],[2],[12],[14]&[13] were conceptualized using the closure operator (cl) & the interior operator( int ) in the 

following manner: 

 

 Definition:  

A subset A of a topological space (X,T) is called  

I. a semi-pre –open[1]  or β-open [6] set  if A⊆ cl(int(cl(A))) and a semi-pre closed or β-closed   if 

int(cl(int(A))) ⊆  A. 

II. a b-open[2]  set if  A⊆ cl(int(A))∪ int(cl(A)) and a b-closed [8] if cl(int(A)) ∩int(cl(A)) ⊆A. 

III. a semi-open [12]  set if  A⊆ cl(int(A)) and semi-closed if int(cl(A)) ⊆ A. 

IV. an α-open[14] set if  A⊆  int(cl(int(A))) and an α-closed set if cl(int(cl(A))) ⊆  A. 

V. a pre-open [13] set if  A ⊆ int(cl (A)) and pre-closed if cl(int(A)) ⊆  A. 

 

The class of pre-open, semi-open ,α –open ,semi-pre open and b-open subsets of a space (X,T) are usually 

denoted by  PO(X,T),SO(X,T), 
T , SPO(X,T) & BO(X,T) respectively. Any undefined terminology used in 

this paper can be known from [4]. 

In 1996, D.Andrijevic made the fundamental observation: 

 

 Proposition: 

 For every space (X,T) , PO(X,T) ∪ SO(X,T) ⊆ BO(X,T) ⊆ SPO(X,T) holds but none of these 

implications can be reversed[10]. 
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 Proposition : Characterization [10]: 

I. S is semi-pre-open iff   S ⊆ sint(sclS). 

II. S is semi-open iff   S ⊆ scl (sintS) . 

III. S is pre-open iff    S ⊆ pint(pclS) . 

IV. S is b-open iff    S ⊆ pcl(pint S). , where S⊆ X & (X,T) is a space. 

 

  The separation axioms of topological spaces are usually denoted with the capital letter “T” after the 

German word “Trennung” which means separation. Separation axioms are one among the most common 

important & interesting concepts in Topology and are used to coin more restricted classes of topological spaces. 

However, the structure and  the properties of such spaces are not always that easy to comprehend.  

 

§1. Separation axioms in terms of nearly open sets: 

 The separation axioms enable us to assert with precision whether a topological space has sufficient 

number of open sets as well as nearly open sets to serve the purpose that the larger the number of open sets as 

well as nearly open sets, the greater is the supply of the continuous or respective continuous functions because 

the concept of continuity or respective continuity is fundamental in analysis & topology and intimately linked 

with open or nearly open sets. 

 This section highlights the overview of the separation axioms in terms of nearly open sets viz p-open,s-

open ,α- open & β-open sets. 

     

℘ -Tk  Topological Spaces (℘  =  p, s, α & β; k = 0,1,2): 

 The literature survey on all℘ -Tk  spaces (℘  =  p, s, α & β; k = 0,1,2)  has been brought under a 

common frame work. 

 

Definition (1.1):   A topological space (X,T) is said to be : 

(i) ℘ - T0 space if for each  pair of distinct points x and y of X, there exists a ℘-open set A such that  x∈ A but 

y∉ B & that y∈ A but x∉ B.  

Or 

℘- T0 space if for any two distinct points x and y of X, there exists a ℘-open set  containing one of them but not 

the other. 

 

(ii) ℘-T1 space  if for each  pair of distinct points x and y of X, there exists a pair of ℘-open sets A & B such 

that    x∈ A but y∉ A & that    y∈ B but x∉ B.  

Or 

℘- T1 space if for any pair of distinct points x and y of X, there exist ℘ -open sets  A & B in the manner that A 

contains x  but not y  and B contains y but not x. 

 

(iii) ℘- T2 space if for each pair of distinct points x and y in X, there exist two disjoint ℘-open sets A and B  

such that x∈ A & y∈ B. 

Or 

℘- T2 space if for any two distinct points x and y of X, there exist a ℘-open sets A& B such that x∈ A, y∈ B  

and  A∩B = φ. 

 

Remark (1.1): If a space (X,T) is ℘ -Tk  , then it is ℘ -Tk-1 , k = 1,2. But the converse is not true. 

 

Example (1.1):  Every℘ -T0 space is not necessarily a ℘-T1 space. 

Let us consider the set N of all natural numbers. Let T = { φ, N & Gn ={1,2,3,…..,n},n∈ N}. 

Then (N,T) is a topological space. Obviously, every Gn is a℘ -open set where ℘  = p, s, α & β. 

Clearly, the space (N,T) is a℘ -T0 space, because if we consider two distinct points  m and n (m< n) then Gm = 

{1,2,3,……m} is a℘ -open set containing m but not containing n and hence it is a ℘-T0 space,. 

 But it is not a ℘ − T1 space because if we choose Gn = {1,2,3,……,n}, then m ∈ Gm but n ∉ Gm and n ∈Gn but 

m ∈Gn as m<n. 

Hence,(N,T) is not a ℘-T1 space, even though it is a ℘-T0 space. 

 

Example (1.2): Every℘ -T1 space is not necessarily a ℘ -T2 space. 

Let T be the co-finite topology on an infinite set X, then (X,T) is a cofinite topological space. 
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Obviously, every member of T is a ℘  -open set where  ℘  =  p, s, α & β. Clearly, the space (X,T) is a ℘ -T1 

space because if we consider two distinct points x & y of X, then {x}& {y} are finite sets and hence X –{x}, X 

–{y} are members of T i.e. X-{x}& X-{y} are ℘  -open sets such that y ∈ X –{x} & x ∈ X –{y} but x∉ X-{x}& 

y∉ X-{y}. 

But in this case the topological space(X,T) is not ℘ -T2 space. 

If possible, let (X,T) be a ℘-T2 space so that for distinct points x,y there exist ℘-open sets G & H 

containing x & y respectively in the manner that G ∩ H  = φ. Consequently (G ∩ H)
c
  = φ

c
 i.e. G

c
 ∪ H

c
 = X. 

Now, G & H  being ℘ -open sets , therefore G
c
 & H

c
 are both finite by definition of co-finite topology and 

hence , there union X is also finite . But this contradicts the hypothesis that X is infinite which arises due to our 

assumption that (X,T) is a ℘-T2 space. Hence, (X,T) is not  ℘-T2 space. 

 

Example (1.3):    
(i) We consider the topological space (X,T)  where  X = {a,b,c,d} And   

 T   = {φ,{a},{a,b},{c,d},{a,c,d}, X} 

Here closed sets are : φ,{b},{a,b},{c,d},{b,c,d}, X. 

Simple computations show that 

PO(X,T) = {Φ,{a},{c},{d},{a,b},{a,c},{a,d},{c,d},{a,b,c}{a,b,d},{a,c,d}, X}. 

SO(X,T) ={ Φ,{a},{a,b},{c,d},{a,c,d},X} = T. 

αO(X,T) = T & βO(X,T)  = PO(X,T). 

Thus (X,T) is p-T0 & β-T0 space but neither p-Tk nor β- Tk space where k = 1,2. 

Also ,(X,T) is not a ℘ -Tk space where ℘ = s & α; k = 0,1,2. 

 

(ii) Let the topological space (X,T)  be given by   X = {a,b,c,d} And   

 T   = {φ,{b},{c},{b,c}, X} 

Simple computations show that 

PO(X,T) = {Φ,{b},{c},{b,c},{a,b,c},{b,c,d}, X}. 

SO(X,T)={Φ,{b},{c},{a,b},{a,c},{b,d},{b,c},{c,d},{a,b,c}{a,b,d},{b,c,d},{a,c,d},X}  

αO(X,T) = PO(X,T) & βO(X,T)  = SO(X,T). 

Here (X,T) is s-T0, s- T1, s-T2 space as well as β-T0,β-T1 & β-T2 space. But (X,T) is neither  

p-Tk  nor α-Tk space where k = 0,1,2. 

 

(iii) Let  the topological space (X,T) be illustrated as:   

X = {a,b,c,d} and   T   = {φ,{a},{b},{c},{a,b},{b,c},{c,a},{a,b,c}, X} 

Simple computation provides that 

PO(X,T) = {Φ,{a},{b},{c},{a,b},{b,c},{c,a},{a,b,c},X}. 

            SO(X,T) =P(X)-{d}. 

            αO(X,T) = T 

        & βO(X,T)  = P(X)-{d}. 

Here (X,T) is s-T2 space as well as  β-T2 space. But it is not even p-T2,α-T2 space or p-T1, α-T1 space. Clearly, 

(X,T) is a   ℘-T0  space where ℘  =  p, s, α & β . 

 

Observations:  

(a) In the example (i), (X,T) is not a T0 -space and also in the example (ii), (X,T)  is not a T0 -space. But in the 

example (iii) (X,T) is a T0 –space. 

(b) Since, every open set is p-open, s-open ,α –open & β-open , hence 

(b1)  (X,T) is T0 –space ⟹ (X,T) is℘- T0 –space. 

(b2) (X,T) is T1 –space ⟹ (X,T) is ℘-T1 –space. 

(b3) (X,T) is T2 –space ⟹ (X,T) is ℘- T2 –space, where ℘  =  p, s, α & β . 

However, the converse of these results may not be true.  

(c) These facts establish that the concepts of ℘-Tk spaces are different from the concepts of Tk -spaces where k 

= 0,1,2 & ℘  =  p, s, α & β . 

 

Theorem (1.1): 

 A topological space (X,T) is a ℘  -T0-space iff for each pair of  distinct  points x &y of X , the ℘  -

cl{x}≠   ℘ -cl{y} where ℘  =  p, s, α & β. 
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Proof:  

Necessity:  Let (X,T) be  a ℘ -T0-space  where ℘  =  p, s, α & β and let x,y be any  two distinct point of X. Then 

we have to show that℘ -cl{x} ≠ ℘ -cl{y}. Since the space is ℘-T0, there exists a℘ -open set G containing one 

of them, say x, but not containing y. Then X-G is a℘ -closed set which does not contain x but contains y. By 

definition℘ -cl{y} is the intersection of all ℘-closed set containing {y}. It follows that ℘ −cl{y}⊂ X – G. 

Hence x ∉ X-G implies that x∉  ℘-cl{y}. Thus x∈  ℘cl{x} but x∉  ℘ −cl{y}.          

It follows that  ℘ -cl{x} ≠ ℘ -cl{y}. 

 

Sufficiency:   

Let  x ≠ y ⇒ ℘ − cl*x+ ≠ ℘ − cl{y} where x,y are points of X. Since     ℘ -cl{x} ≠ ℘-cl{y}, there exists at 

least one point z of X which belongs to one of them, say℘ -cl{x} and does not belong to ℘ −cl{y}. We claim 

that x ∉  ℘-cl{y}. For if  Let    x∈ ℘-cl{y}.  

Then ℘-cl{x} ⊆ ℘-cl{y} and so x∈  ℘-cl{x} ⊂ ℘-cl{y} which is a contradiction. Accordingly x∉  ℘-cl{y} and 

consequently x  ∈X –(℘-cl{y}) which is ℘ -open . 

 Hence, X –(℘-cl{y}) is a ℘-open set containing x  but not y . It follows that (X,T) is a℘-T0-space where ℘  =  

p, s, α & β. 

 

Theorem (1.2): A topological space (X,T) is a ℘-T1- space if and only if every singleton subset {x} of X is℘ -

closed where ℘  =  p, s, α & β. 

 

Proof: The ‘if part’: let every singleton subset {x} of X be℘ -closed. We have to show that the space is ℘-T1. 

Let x,y, be the two distinct point of X. Then X-{x} is a℘ -open set which contains y but does not contain x. 

Similarly X-{y} is a℘ - open set which contains x but does not contain y . Hence, the space (X,T) is ℘-T1 where 

℘  =  p, s, α & β. 

 

The ‘only if ‘ part : Let the space be ℘-T1 and let x be any point of X. we want to show that {x} is ℘-closed, 

that is , to show that X-{x} is℘ -open. Let y∈ X-{x}.Then y≠ x. Since X is℘ -T1, there exists a ℘-open set Gy 

such that y∈ Gy but x∉ Gy. It follows that y∈Gy⊂X-{x}. 

Hence, X-{x} = ∪{Gy : y∈Gy} = A ℘-open set . i.e. {x} is a ℘-closed set where  ℘  =  p, s, α & β. 

 

Theorem (1.3):  A space (X,T)  is ℘-T2 space iff for each point x∈X , the intersection of all  

℘-closed set containing x is the singleton set {x}, where ℘  =  p, s, α & β. 

 

Proof: Necessity: 

Suppose that (X,T) is a  ℘-T2 space where ℘  =  p, s, α & β. Then there exist a pair of ℘-open sets G &H 

for each pair of distinct points x,y in X such that x∈G , y∈H  and G ∩ H  = φ. Now, G ∩ H  = φ ⇒G ⊂H
c
. Hence 

, x∈G⊂H
c
 so that H

c
 is a ℘-closed set containing x, which does not contain y as y∈H . therefore y  cannot be 

contained in the intersection of all ℘-closed sets which contains x. Since, y ≠ x is arbitrary, it follows that the 

intersection of all ℘-closed sets containing x is the singleton set {x}.                                               Consequently, 

∩ {F: x∈ F⋀ F is ℘-closed} = {x}. 

 

Sufficiency:  

Suppose that {x} is the intersection of all ℘-closed subsets of (X,T) containing  x where x is an arbitrary 

point of X. 

Let y be any other point of X which is different from x. Obviously, by hypothesis y does not belong to the 

intersection of all ℘-closed subsets containing  x. So there must exist a ℘-closed set , say N, containing x such 

that y ∉N. Now, N being a ℘-closed nbd of x, there must exist a ℘-open set G such that x∈ G ⊂ N. 

Thus, G and N
c
  are ℘-open sets such that x∈ G, y ∈ N

c
 and G ∩ N

c
 = φ.Consequently(X,T) is a ℘ - T2 space 

where ℘  =  p, s, α & β. 

Hence, the theorem. 

 

Remark (1.2):  The following example is cited in the support of above three theorems. 

Let X = {a,b,c,d,e}. T = {φ,{a},{b},{a,b},{c,d},{a,c,d},{b,c,d},(a,b,c,d},{b,c,d,e},X}. 

& T
c
 = { φ,{a},{e},{a,e},{b,e},{a,b,e},{c,d,e},{a,c,d,e},{b,c,d,e},X}. 

ThenβO(X,T)={φ,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{b,e},{c,d},{c,e},{d,e}, 

{a,b,c},{a,b,d},{a,b,e},{a,c,d},{a,c,e},{b,c,d},{b,c,e},{c,d,e},{a,d,e},{b,d,e},{a,b,c,d}, 

{a,b,c,e},{b,c,d,e},{a,b,d,e},{a,c,d,e}, X}. = P(X)-{{e},{a,e}}. 
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βC(X,T) = P(X) – {{b,c,d},{a,b,c,d}}. 

Here, (X,T) is a β-T2  space, consequently, it is also a β-T1 and β-T0 space.  

Obviously,  

(1) β-cl{x} ≠β-cl{y}; ∀ x,y∈ X& x≠ y. 

(2) {a},{b},{c},{d},{e} are β-closed sets i.e. every singleton set is β-closed. 

(3) ∩ {F: F∈ βC(X,T) such that x∈F} = {x}∀ x∈ X. 

 

Definition (1.2): ℘-open mappings: 

A mapping f(X,T)→(Y,σ) from one space (X,T) to another space (Y,σ) is called ℘ −open mapping (i.e. ℘ = 

p,s,α,β) iff f sends ℘-open sets (i.e. ℘ = p,s,α,β –open) of (X,T) into ℘ -open sets (i.e. ℘ = p,s,α,β-open) of 

(Y,σ). 

 

Theorem (1.4):The property of a space being a ℘ - T0 space is a topological property where ℘ = p,s,α&β. 

Proof:  

Let f(X,T)→(Y,σ) be a one-one onto & ℘ −open mapping from a ℘ - T0 space (X,T) to any other 

topological space (Y,σ). It will be established that (Y,σ) is also a ℘ - T0 space where ℘ = p,s,α,β. 

Let y1 & y2 be any two distinct points of Y and as f is one-one & onto, there must exist distinct points x1 & x2 of 

X such that f(x1) = y1 & f(x2) = y2……………(1) 

Since, (X,T) is a ℘ - T0 space so there exists a T−℘ −open set G in manner that x1∈G but x2∉G. 

Again, f, being ℘ −open, provides that f(G) is a σ−℘ −open and containing f(x1) = y1 and not containing  

f(x2) = y2. 

Thus, there exists a σ−℘ −open set f(G) which contains y1 and does not contain y2 and in turn (Y,σ) is a ℘ - T0 

space 

Again, as the property of being ℘ − T0 space is preserved under one-one , onto & ℘ −open mapping, so it 

is a topological property. 

Hence, the theorem. 

 

Theorem (1.5): The property of a space being a ℘ - T1 space is a topological property where ℘ = p, s, α & β. 

Proof:  

Let (X,T) be a ℘ - T1 space and (Y,σ) be any other topological space such that    f(X,T)→(Y,σ) is one-one 

onto & ℘ −open mapping from  (X,T) to (Y,σ).  

It is required to prove that (Y,σ) is also a ℘ - T1 space where ℘ = p,s,α,β. 

Let y1 & y2 be any two distinct points of Y and as f is one-one & onto, there must exist distinct points x1 & 

x2 of X such that f(x1) = y1 & f(x2) = y2                                                                                          ……………(1) 

Since, (X,T) is a ℘ - T1 space so there exists a T−℘ −open sets G & H in manner that x1∈G , x2∉G & x2∈H 

, x1∉H                                                                                                                                     

……………………..(2) 

Again, f, being ℘-open, provides that f(G) & f(H) are σ−℘ −open sets such that   

f(x1) = y1 ∈ f(G)  but f(x2) = y2 ∉ f(G).  

& f(x2) = y2 ∈ f(H)  but f(x1) = y1 ∉ f(H). 

Above relations show that (Y,σ) is also a  ℘ - T1 space. 

Again, as the property of being ℘ - T1 space is preserved under one-one , onto & ℘ −open mapping, so it is 

a topological property. 

Hence, the theorem. 

 

Theorem (1.6): The property of a space being a ℘ - T2 space is a topological property where ℘ = p,s,α & β. 

Proof: Let (X,T) be a ℘ −T2 space and (Y,σ) be any other topological space such that    f(X,T)→(Y,σ) is one-

one onto & ℘ −open mapping from  (X,T) to (Y,σ).  

It is required to prove that (Y,σ) is also a ℘ - T2 space where ℘ = p,s,α &β. 

Let y1 & y2 be any two distinct points of Y and as f is one-one & onto, there must exist distinct points x1 & 

x2 of X such that f(x1) = y1 & f(x2) = y2                                                                                            ……………(1) 

Since, (X,T) is a ℘ - T2 space so there exists a T−℘ −open set G & H such that x1∈G , x2∉G & G ∩ H = φ                                              

                                                                                                                                             ………………..(2) 

Again, f, being ℘ −open, provides that f(G) & f(H) are σ−℘ −open sets such that   

f(x1) = y1 ∈ f(G)  but f(x2) = y2 ∈  f(H) and 

&  G ∩ H = φ ⇒     f(G ∩ H) = φ ⇒  f( G) ∩ f(H )= φ. 

Above relations show that (Y,σ) is also a  ℘ - T2 space. 
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Again, as the property of being ℘ - T2 space is preserved under one-one , onto & ℘-open mapping, so it is a 

topological property. 
Hence, the theorem. 

 

§2. ℘ - R0 spaces where ℘ = p,s,α & β.  

In this section, the notion of ℘ - R0 spaces where ℘ stands for p,s,α,β is introduced and some basic 

properties are discussed. But before we take up it, we project the notion of the ℘ -kernel of a set A of a space 

(X,T) and the ℘ -kernel of a point x of a space (X,T) in the following manner: 

Definition (2.1): 
𝐼𝑛 𝑎 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 (𝑋, 𝑇), 𝑖𝑓 𝐴

⊆  𝑋, 𝑡𝑒𝑛 𝑡𝑒 ℘ − 𝑘𝑒𝑟𝑛𝑒𝑙 𝑜𝑓 𝐴, 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦  ℘ − 𝑘𝑒𝑟(𝐴), 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑡𝑒 𝑠𝑒𝑡 ℘
− 𝑘𝑒𝑟(𝐴)  = ∩ { 𝒪 ∈ ℘𝑂(𝑋, 𝑇)| 𝐴 ⊆  𝒪}. 

Definition (2.2): 

If x be a point of a topological space (X,T), then the  ℘ -kernel of x , denoted by ℘  -ker({x}) is defined to be 

the set ℘ − ker({x})= ∩{ 𝓞 ∈ ℘𝑂(X,T)| x∈ 𝓞 }. 

 

Lemma (2.1):  

If A be a subset of of a topological space (X,T), then ℘ −ker(A) = ∩{x∈ X |℘ -cl({x})∩ 𝐴 ≠  𝛷}.  

 

Proof:  Let x∈ ℘ −ker(A) where A⊆ X & (X,T) is a topological space. On the contrary, we assume that ℘ -
cl({x})∩ A =  Φ.  Hence ,x ∉ X – {℘ -cl({x})} which is a ℘-open set containing A. This is impossible as x 

∈ ℘ −ker(A). Consequently, ℘ -cl({x})∩ A≠  Φ. 

Again let , ℘ -cl({x})∩ ≠  Φ exist and at the same time let x ∉ ℘ −ker(A). This means that there exists a ℘-
open set B containing A and x ∉ B. 

Let y ∈ ℘ -cl({x})∩ A. therefore, B is a ℘ −nbhd of y for which x ∉ B. By this contradiction, we have  x ∈ ℘-
ker(A). 

Hence, p-ker({A})=∩ {x∈ X |℘ -cl({x})∩ A ≠  Φ}. 

 

Definition (2.3): ℘ − R0 spaces: 
A topological space (X,T) is said to be a ℘ − R0 space if every ℘ − open set contains the ℘ − closure of 

each of its singletons, where ℘     = p,s,α & β.  
The implications between ℘ − R0 spaces are indicated by the following diagram: 

 

R0 space   ⟹       α-R0 space   ⟹                   s-R0 space 

                                ⇓                                           ⇓ 

                                 p- R0 space                          β- R0 space. 

 

We, however, know that a R0-space is a topological space in which the closure of the singleton of every point of 

an open set is contained in that set. 

None of the above implications in the diagram is reversible, as illustrated by the following examples: 

 

Example (2.1):  
Let X = {a,b,c}, T = {φ,(a,b},X}. Then PO(X,T) = {φ,{a},{b},{a,b},{b,c},{c,a},X}. 

& PC(X,T) = {φ,{b},{a},{c},{a,c},{b,c},X}. 

Hence, (X,T) is a  p- R0 space. 

Again, αO(X,T) = {φ, {a,b},X} = sO(X,T). 

&    αC(X,T) = {φ,{c},X} =     sC(X,T). 

Since, α-cl({a}) = X ⊄{a,b}∈ αO(X,T), hence,(X,T) is not a α-R0 space. 

Similar is the reason for (X,T) to be not a s-R0 space. 

 

Example (2.2): 

Let  X = {a,b,c} , T = {φ,{a},{b},{a,b},X}. 

Then  sO(X,T) = {φ,{a},{b},{a,b},{b,c},{c,a},X} = βO(X,T). 

 &         sC(X,T) = {φ,{b},{a},{c},{a,c},{b,c},X} = βC(X,T). 

Hence, (X,T) is a s-R0 space as well as β-R0 space. 

 

Again, PO(X,T) = {φ,{a},{b},{a,b},X} = αO(X,T). 

& PC(X,T) ={φ,{c},{a,c},{b,c},X} = αC(X,T). 
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Since, pcl({a}) = {a,c}⊄{a,b}∈ PO(X,T), hence, (X,T) is not a p-R0 space. 

Similar is the reason for (X,T) to be not an α-R0 space. 

 

Remark (2.1):  

(1) The concepts  of p-R0 space and s-R0 are independent. Example (2.1) shows that the space (X,T)is p-R0 but  

s-R0 where as in example (2.2), the space (X,T) is s-R0 but not p-R0. 

(2) The notion of α-R0 does not imply the notion of R0  as it is shown by the following example. 

Example (2.3): 

Let X be an infinite set and p∈X be a fixed point. Let  T = {φ &G ⊂ X –{p}& G
c
 is finite}. 

It can be observed that if G is an open set and x∈ G, then cl({x}) = X ⊄G. So, (X,T) is not a R0 space but as X is 

α- T1 so every {x} is α-closed so α-cl({x}) = {x} ⊂G, ∀ x ∈ G & G ∈ αO(X,T). Hence, (X,T) is an α-R0 space. 

 

Example(2.4): 

Let X = {a,b,c,d,e}. T = {φ,{a},{b},{a,b},{c,d},{a,c,d},{b,c,d},(a,b,c,d},{b,c,d,e},X}. 

& T
c
 = { φ,{a},{e},{a,e},{b,e},{a,b,e},{c,d,e},{a,c,d,e},{b,c,d,e},X}. Then 

PO(X,T)={φ,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c}, 

{a,b,d},{a,c,d},{b,c,d},{b,c,e},{a,b,c,d},{a,b,c,e},{b,c,d,e},{a,b,d,e}X}.  

PC(X,T)={φ,{a},{c},{d},{e},{a,d},{a,e},{b,e},{c,e},{d,e},{a,b,e},{a,c,e},{a,d,e},{b,c,e},{b,d,e}, 

{c,d,e},{a,b,c,e},{a,b,d,e},{a,c,d,e},{b,c,d,e},X}. 

Since,p-cl({b})= {b,e} ⊄ {a,b,c,d}∈ PO(X,T), Hence, (X,T) is not a p-R0 space. 

Again,     βO(X,T) =  P(X)-{{e},{a,e}} &  βC(X,T) = P(X) – {{b,c,d},{a,b,c,d}}. 

Since, (X,T) is a β-T1 space so every {x} is β-closed which means that β-cl({x}) = {x} ⊂G∀ x ∈ G & 

G∈βO(X,T). Consequently, (X,T) is a β-R0 space. 

Next,SO(X,T)={φ,X,{a},{b},{a,b},{b,e},{c,d},{a,b,e},{a,c,d},{b,c,d},{c,d,e},{a,b,c,d},{b,c,d,e},{a,c,d,e}}. 

SC(X,T)={φ,X,{a},{b},{e},{a,b},{a,e},{b,e},{c,d},{a,b,e},{a,c,d},{c,d,e},{a,c,d,e},{ b,c,d,e}}. 

Here, (X,T) is a s-R0 space. 

Also, αO(X,T) = T & αC(X,T) = { φ,X,{a},{e},{a,e},{b,e},{a,b,e},{c,d,e},{a,c,d,e},{b,c,d,e}}. 

Here, (X,T) is not an α-R0 space. 

We, now, mention the following lemmas with proofs, useful in the sequel. 

 

Lemma (2.2):  In a topological space (X,T), for each pair of distinct points  

x,y, ∈ X, x ∈ ℘ −cl({y}) ⇔ y ∈ ℘ −ker({x}), where ℘ = p,s, 𝛼 & β. 

 

Proof: 

Suppose that y∉  ℘ −ker({x}). Then there exists a ℘ -open set V containing x such that y ∈ V. Therefore, 

we have x∉  ℘ −cl({y}). 

This means that         𝑦 ∉   ℘ − 𝑘𝑒𝑟({𝑥})  ⇒  𝑥 ∉ ℘ − 𝑐𝑙({𝑦}). 
𝑖. 𝑒.                     ℸ 𝑥 ∉ ℘ − 𝑐𝑙({𝑦}) ⇒    ℸ 𝑦 ∉   ℘ − 𝑘𝑒𝑟({𝑥}) 

𝑖. 𝑒.                         𝑥 ∈ ℘ − 𝑐𝑙({𝑦}) ⇒  𝑦 ∈   ℘ − 𝑘𝑒𝑟({𝑥}). 
 

Similar is the argument for the proof of the converse i.e.  

y ∈ ℘ −ker({x})⇒ x∈  ℘ −cl({y}). 

Hence, the theorem. 

 

Lemma (2.3):  The following statement are equivalent for each pair of points x & y in a topological space 

(X,T): 

(a) ℘ − 𝑘𝑒𝑟({𝑥})  ≠ ℘ − 𝑘𝑒𝑟({𝑦}). 
(b) ℘ − 𝑐𝑙({𝑥})  ≠   ℘ − 𝑐𝑙({𝑦}). 𝑊𝑒𝑟𝑒 ℘ =  𝑝, 𝑠, 𝛼 & 𝛽. 
 

Proof:  (a) ⇒(b): 

 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡𝑎𝑡 ℘ − 𝑘𝑒𝑟({𝑥})  ≠ ℘ − 𝑘𝑒𝑟({𝑦}), 𝑡𝑒𝑛 𝑡𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑧 𝑖𝑛 𝑋 𝑠𝑢𝑐 𝑡𝑎𝑡 𝑧 ∈  ℘ −
𝑘𝑒𝑟({𝑥}) 𝑎𝑛𝑑 𝑧  ∉    ℘ − 𝑘𝑒𝑟({𝑦}). 
Since  𝑧 ∈  ℘ − 𝑘𝑒𝑟({𝑥}), 𝑒𝑛𝑐𝑒 𝑥 ∈ ℘ − 𝑐𝑙({𝑧}). This means that  

       {𝑥}  ∩ ∈ ℘ − 𝑐l({z}) ≠    φ. 

𝐵𝑦 𝑧 ∉    ℘ − 𝑘𝑒𝑟({𝑦}), 𝑤𝑒 𝑎𝑣𝑒 {𝑦}  ∩  ℘ − 𝑐𝑙({𝑧}) =    φ. 
Since, x ∈ ℘-cl({z}), ℘-cl({x}) ⊂   ℘-cl({z}) and {y}∩ ℘-cl(*x+) =    φ. 
Hence, ℘-cl({x}) ≠  ℘-cl({y}). 



Dr. Thakur C. K. Raman Int. Journal of Engineering Research and Applications         www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 4, ( Part -6) April 2015, pp. 97-108 

 www.ijera.com                                                                                                                              104 | P a g e  

(b) ⇒(a):  Suppose that ℘-cl({x}) ≠  ℘-cl({y}). Then there exists a point z in X such that z ∈ ℘-cl({x}) and 

𝑧  ∉    ℘ −cl({y}).There, there exists a  ℘ -open set containing z and therefore x but not y i.e. y ∉   ℘-ker({x}). 

Hence, ℘ −ker({x}) ≠ ℘ −ker({y}).  

Hence, the theorem. 

 

Theorem (2.1):  

A space (X,T) is℘ -R0 space if and only if for each pair x,y of distinct points in X, 

℘-cl({x}) ∩ ℘-cl(*y+) =    φ    or *x,y+ ⊂ ℘-cl({x}) ∩ ℘-cl({y})  where ℘ = p,s, α & β. 
 

Proof:  Necessity : 

Let (X,T) be a℘ -R0 space and x,y ∈X, x ≠y. On the contrary, suppose that 

  ℘-cl({x}) ∩ ℘-cl({y}) ≠    φ    & *x,y+ ⊄ ℘-cl({x}) ∩ ℘-cl({y}) . 
       Let z ∈ ℘-cl({x}) ∩ ℘-cl({y}) & x ∉ ℘-cl({x}) ∩ ℘-cl({y}). 
Then  x ∉ ℘-cl({y}) and x ∈(p-cl{y})c which is a  ℘ -open set. But ℘-cl({x}) ⊄ [℘-cl({y})]c. 
which appears as a contradiction as (X,T) is a ℘-R0 space. 
Hence, for each pair of distinct points x,y of X, we have ℘-cl({x}) ∩ ℘-cl(*y+) = φ or  
{x,y}⊂  ℘-cl({x}) ∩ ℘-cl({y}) . 
 

Sufficiency :  

 Let  U be a ℘ -open set and x ∈U. Suppose that  ℘-cl({x}) ⊄ U. So there is a point  

y∈ ℘-cl({x}) such that y ∉ U and ℘-cl({y}) ∩ U  = φ. 
         Since, Uc is  ℘ -closed & y ∈ Uc, hence, {x,y} ⊄ ℘-cl({y}) ∩ ℘-cl({x})  and thus  
  ℘-cl({x}) ∩ ℘-cl({y}) ≠ φ . Consequently, the assumption of the condition provides that (X,T) is ℘- R0 space. 
Hence, the theorem. 

 

Theorem (2.2): For a topological space (X,T), the following properties are equivalent : 

(a) (𝑋, 𝑇) 𝑖𝑠 𝑎℘ − 𝑅0 𝑠𝑝𝑎𝑐𝑒; 
(b)   ℘ − 𝑐𝑙({𝑥})  =    ℘ − 𝑘𝑒𝑟({𝑥}), ∀  𝑥 ∈  𝑋, 𝑤𝑒𝑟𝑒 ℘ =  𝑝, 𝑠, 𝛼 & 𝛽. 
 

Proof: (a) ⇒(b): 

  Let (X,T) be a℘ − 𝑅0 𝑠𝑝𝑎𝑐𝑒. 
𝐵𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 (2.2), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈  𝑋, 𝑤𝑒 𝑎𝑣𝑒 ℘ − 𝑘𝑒𝑟({𝑥})  = ∩ { 𝒪 ∈ ℘𝑂(𝑋, 𝑇)| 𝑥 ∈  𝒪}. 

 

And by definition (2.3) , each ℘ -open set θ containing x contains   ℘ −cl({x}). 

Hence, ℘ − 𝑐𝑙({𝑥})  ⊂   ℘ − 𝑘𝑒𝑟({𝑥}). 
𝐿𝑒𝑡 𝑦 ∈  ℘ − 𝑘𝑒𝑟({𝑥}), 𝑡𝑒𝑛 𝑥 ∈  ℘ − 𝑘𝑒𝑟({𝑦}) 𝑏𝑦 𝑙𝑒𝑚𝑚𝑎(2.2), 𝑎𝑛𝑑 𝑠𝑜 ℘ − 𝑐𝑙({𝑥})  

= ℘ − 𝑐𝑙({𝑦}). 𝑇𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑦 ∈ ℘ − 𝑐𝑙({𝑥}). 𝑇𝑒𝑠𝑒 𝑚𝑒𝑎𝑛 𝑡𝑎𝑡 ℘ − 𝑘𝑒𝑟({𝑥})  
⊂   ℘ − 𝑐𝑙({𝑥}). 

𝐻𝑒𝑛𝑐𝑒, ℘ − 𝑐𝑙({𝑥})  =    ℘ − 𝑘𝑒𝑟({𝑥}). 
(b)⇒(a): 

 Suppose that 𝑓𝑜𝑟 a topological space (𝑋, 𝑇), ℘ − 𝑐𝑙({𝑥})  =    ℘ − 𝑘𝑒𝑟({𝑥}) ∀  𝑥 ∈  𝑋. 
    Let G be any ℘ −open set in (X,T) , then for every 𝑝 ∈  𝐺, ℘ − 𝑘𝑒𝑟({𝑝})  = ∩ { 𝐺 ∈ ℘𝑂(𝑋, 𝑇)| 𝑝 ∈
𝐺}. 𝐵𝑢𝑡 ℘ − 𝑐𝑙({𝑝})  =  ℘ − 𝑘𝑒𝑟({𝑝}) by hypothesis.  Hence, combing these two, we observe that for every 

p∈G∈ ℘O(X,T), ℘-cl({x})∈G. Consequently, (X,T) is a ℘- R0 space. 
Hence, the theorem.  

 

Theorem (2.3): For a topological space (X,T) , the following properties are equivalent: 

(a) (X,T) is a ℘ −R0 space. 
(b) If F is ℘-closed, then F = ℘- ker (F); 
(c) If F is ℘-closed and x ∈ F, then ℘- ker ({x}) ⊂ F. 
(d) If  x∈ X, then ℘-ker({x}) ⊂  ℘-cl({x}). 
 

 

 

Proof:  (a) ⇒(b): 
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(a) Let (X,T) is a ℘ −R0 space & F, a ℘-closed set. Let x ∉ F, then Fc is a ℘ -open set containing x, so that 
℘-cl({x}) ⊂ Fc as (X,T) is a ℘ −R0. This means that ℘-cl({x})∩ F= φ and by lemma (2.1), x ∉ ℘- ker 
(F). 

Therefore,  ℘- ker (F) = F. 
(b) ⇒(c): 

In general, A ⊂ B ⇒ ℘- ker (A) ⊂ ℘- ker (B), Hence, it follows that for x ∈ F, {x} ⊂ F ⇒ ℘- ker({x}) ⊂ 
℘- ker(F) = F as F is ℘-closed. 
   (c) ⇒(d): 
        Since, x ∈ ℘-cl({x}) and ℘-cl({x}) is ℘ -closed, hence, using (c) we get  
       ℘- ker({x}) ⊂ ℘- cl({x}). 
 

(d)⇒(a) : 

Let (X,T) be a topological space in which ℘- ker({x}) ⊂ ℘- cl({x}) for every x ∈ X. 
Let y ∈ ℘-cl({x}), then  x ∈ ℘-ker({y}), since, y ∈ ℘-cl({y}) and  ℘-cl({y}) is  ℘-closed, by hypothesis x ∈ 
℘-ker({y})⊂ ℘-cl({y}). Therefore y ∈  ℘-cl({x}) ⇒ x ∈ ℘-cl({y}). Similarly, x ∈ ℘-cl({y}) implies y ∈ ℘-
cl({x}). Thus (X,T) is ℘-R0 space, using theorem (2.4). 
Hence, the theorem. 

 

Theorem (2.4): for a topological space (X,T) , the following properties are equivalent: 

(a) (𝑋, 𝑇) 𝑖𝑠 𝑎 ℘ − 𝑅0 𝑠𝑝𝑎𝑐𝑒; 
(b) 𝐹𝑜𝑟 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑥 & 𝑦 𝑜𝑓 𝑋, 𝑥 ∈  ℘ − 𝑐𝑙({𝑦})  ⟺  𝑦 ∈  ℘ − 𝑐𝑙({𝑥}). 
 

Proof: (a) ⇒(b):  

Let (X,T) be a ∈ ℘ −R0 space. Let x & y be any two points of X. Assume that x ∈ ℘ −cl({y}) and D is any  

℘ −open set  such that y∈ D. 

Now, by hypothesis, x ∈ D. Therefore, every ℘ −open set containing y contains x. Hence, y ∈ ℘ −cl({x}) i.e. 

x ∈  ℘ − 𝑐𝑙({𝑦}  ⇒  𝑦 ∈  ℘ − 𝑐𝑙({𝑥}). The converse is obvious and x∈  ℘ − 𝑐𝑙({𝑦})  ⟺  𝑦 ∈  ℘ − 𝑐𝑙({𝑥}). 
(b) ⇒(a): 

Let U be  ℘-open set and x ∈ U. If y ∉ U, then x ∉ ℘-cl({y}) and hence, y ∉   ℘ −cl({x}). This implies that 
℘ −cl({x}) ⊂ U. Hence, (X,T) is a ℘-R0 space. 
Hence, the theorem. 

 

§𝟑. ℘ − 𝑹𝟏 𝒔𝒑𝒂𝒄𝒆𝒔     𝒘𝒉𝒆𝒓𝒆 ℘ =  𝒑, 𝒔, 𝜶 & 𝛽. 
This section includes the notion of ℘ −R1 spaces where ℘  stands for  p,s, 𝛼 & β and their basic properties. 

 

Definition (3.1):  

A topological space (X,T) is said to be a ℘-R1 space if for each pair of distinct points  x & y of X with ℘-cl 

({𝑥})  ≠
 ℘ − 𝑐𝑙({𝑦}) , 𝑡𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟 𝑜𝑓 ℘ − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠 𝑈 𝑎𝑛𝑑 𝑉 𝑠𝑢𝑐 𝑡𝑎𝑡 ℘ − 𝑐𝑙 ({𝑥}) 𝑈 & ℘ −
𝑐𝑙 ({𝑦})  ⊂  𝑉, 𝑤𝑒𝑟𝑒 ℘ =  𝑝, 𝑠, 𝛼 & 𝛽. 
 

Theorem (3.1):  If (X,T) is a ℘-R1 space, then it is a ℘-R0 space. 
 
Proof: Suppose that (X,T) is a ℘-R1 space where ℘ = p,s, α & β. 
Let U be a ℘-open set and x ∈U. then for each point y∈Uc, ℘-cl ({x}) ≠ ℘-cl({y}). 
Since,(X,T)  is a ℘-R1 space, there exist a pair of ℘-open sets Uy & Vy such that ℘-cl ({x}) ⊂ Uy & ℘-cl ({y}) 
⊂ Vy & Uy ∩ Vy = φ. 
  Let A = ∪{Vy: y ∈Uc}. Then Uc ⊂A, x ∈ A and A is a ℘-open set. 
Therefore, ℘-cl({x}) ⊂Ac ⊂ U  which means that (X,T) is a ℘-R0 space. 

Hence, the theorem. 

 

Example (3.1): 
If p be a fixed point of (X,T) with T as the co-finite topology on X given as  

T = *φ, X,G with G ⊂ X – {p} & Gc is finite.}, then the space (X,T) is ℘-R0 but it is not ℘-R1 where ℘ = p,s, α 
& β. 
 

Theorem (3.2): 
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A space (X,T) is a ℘ −R1 space iff for each pair of distinct points  x & y of X with ℘ −cl ({x}) ≠ ℘-cl({y}) , 

there exist disjoint pair of ℘ −open sets U and V such that x  ∈U,y ∈ V & U ∩ V = φ. 

 

Necessity: 

 Let (X,T)  be a ℘ −R1 space. By definition (3.1), for each pair of distinct points  x & y of X with     ℘ −
𝑐𝑙 ({𝑥})  ≠ ℘-cl({y}) ,there can always be obtained disjoint pair of ℘-open sets U and V such 𝑡𝑎𝑡    ℘ −
𝑐𝑙 ({𝑥})  ⊂  𝑈 & ℘ − 𝑐𝑙 ({y}) ⊂ V  where  U ∩ V = φ. We, however, know that                       𝑝 ∈  ℘ −
𝑐𝑙 ({𝑝}), ∀ 𝑝 ∈  𝑋. 𝐻𝑒𝑛𝑐𝑒, 𝑥  ∈ 𝑈, 𝑦 ∈  𝑉 & 𝑈 ∩  𝑉 =  𝜑. 
 

Sufficiency:  

Let x ,y∈  X  and x ≠ y such 𝑡𝑎𝑡  ℘ − 𝑐𝑙 ({𝑥})  ≠  ℘ − 𝑐𝑙({𝑦}) . Also let U & V be 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 ℘ -open sets for 

which x  ∈U,y ∈ V. 

Since, U ∩ V = φ, hence, 𝑥  ∈  ℘ − 𝑐𝑙 ({𝑥})  ⊂  𝑈 & 𝑦 ∈   ℘ − 𝑐𝑙 ({𝑦})  ⊂ V.Consequently, (X,T) is a ℘ −R1 

space.                                                                                              Hence, the theorem.  

Corollary (3.1): 

 Every ℘ −T2 space is ℘ −R1 space, but the converse is not true.   However, we have the following 

result. 

Theorem (3.3): Every ℘ −T1 & ℘ −R1 space  is ℘ −T2 space. 

Proof:   

 Let (X,T)  be a  ℘ −T1 as well as  ℘ −R1 space. Since, (X,T) is a ℘ −T1 space, hence,    ℘ −cl ({x}) = 

{x} ≠ {y} = ℘ −cl({y}) for x,y ∈ X & x ≠ y. 

           Now, theorem (3.2) provides that as (X,T) is a ℘ −R1 space and here,  x ,y∈  X  and      x ≠ y such that  

℘ −cl ({x}) ≠ ℘ −cl({y}), so there exist ℘ -open sets U & V such that              x  ∈U,y ∈ V & U ∩ V = φ. 

Consequently, (X,T) is a ℘ −T2 space. 

Hence, the theorem. 

 

Theorem (3.4):  For a topological space (X,T) , the following properties are equivalent: 

(a) (X,T) is a ℘ −R1 space; 

(b)  For any two distinct points x,y ∈ X with ℘ −cl ({x}) ≠ ℘ −cl({y}), there exist  ℘ -closed sets F1 & F2 such 

that x ∈ F1, y∈ F2  x ∉F2, y ∉F1 and F1∪  F2 = X,where ℘ = p,s, 𝛼 & β. 

 

Proof: (a) ⇒(b): 

Suppose that (X,T) is a ℘ −R1 space. Let x,y ∈X and x ≠ y and with ℘ −cl ({x}) ≠ ℘ −cl({y}),by Theorem 

(3.2), there exist ℘ -open sets U & V such that x  ∈U,y ∈ V . Then, F1 = V
c
 𝑖𝑠 a ℘ -closed set & F2 = U

c
 is also 

℘ -closed set such that x ∈ F1, y∈ F2  x ∉F2, y ∉F1 and F1∪  F2 = X. 

(b)⇒(a): 

Let x,y ∈  X such that  ℘ −cl ({x}) ≠ ℘ −cl({y}).This means that ℘ −cl ({x}) ∩ ℘ −cl({y}) = φ. 

By the assume condition (b), there exist℘ -closed sets F1 & F2 such that x ∈ F1, y∈ F2 , x ∉F2, y ∉F1 and F1∪  F2 

= X. 

 Therefore, x ∈ 
cF 2  = U = A ℘ -open set. 

&  y ∈ 
cF 1  = V = A ℘ -open set. 

Also U ∩ V = φ. 

These facts indicates that  

x∈ ℘-cl ({x}) ⊂ U & y∈  ℘-cl ({y}) ⊂ V such that U ∩ V = φ. Consequently, (X,T) is a   

℘-R1 space. 

Hence the theorem. 

 

§4. ℘ −symmetry of A space & ℘ − generalized closed set: 

We, now, define ℘ − symmetry of a space & (X,T) & ℘ −generalized closed set (briefly ℘g-closed set) in a 

space (X,T) as: 

 

Definition (4.1): A space(X,T)  is said to be ℘ −symmetric if  for every pair of points x,y. in X , x∈ ℘ −cl 

({y})⇒ y∈ ℘ −cl ({x}) where ℘ = p,s, 𝛼 & β. 

 

Definition (4.2): A subset A of a space (X,T) is said to be a ℘ −generalized closed set(briefly ℘g-closed set) if 

℘ −cl ({A}) ⊆ U whenever A⊆U & U is ℘ −open in X  
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where℘ = p,s, 𝛼 & β. 

 

Lemma (4.1): Every ℘ -closed set is a ℘g-closed set but the converse is not true where ℘ = p,s, 𝛼 & β. 

 

Proof:  

It follows from the fact that whenever A is ℘ −closed set, we have℘-cl(A) = A for ℘ = p,s, 𝛼 & β,so the 

criteria ℘ −cl ({A}) ⊆ U whenever   A⊆ U & U is ℘ − open exists & A turns to be a ℘g-closed set. 

But the converse need not to be true as illustrated by the following example: 

       Let   X = {a,b,c,d} And  T   = {φ,{a},{a,b},{c,d},{a,c,d}, X} 

Here closed sets are : φ,{b},{a,b},{c,d},{b,c,d}, X. 

Then , Ts ={ Φ,{a},{a,b},{c,d},{a,c,d},X}, & 
C

sT = {φ,{b},{a,b},{c,d},{b,c,d},X}. 

Now, 
C

sgT  = the class of all sg-closed sets. 

      = {φ,{b},{c},{d},{a,b},{c,d},{b,c},{b,d},{a,b,c},{a,b,d},{b,c,d},X}. 

Therefore, {c},{d},{b,c},{b,d},{a,b,c},{a,b,d} are sg-closed sets but not s-closed. 

Also, T = sT , 
CT = 

C

sT  &  C

gT
C

sgT  which show that {c},{d},{b,c},{b,d},{a,b,c},{a,b,d} are αg-closed 

sets but not α-closed sets.  
Similarly, the other cases can be dealt with. 

 

Theorem (4.1):   A space (X,T) is ℘ −symmetric  if and only if {x} is  ℘g-closed for each x∈X, where ℘ = p,s, 

𝛼 & β.  

 

Proof: Necessity: Let (X,T) be ℘-symmetric , then for distinct points  x,y of X ,  

y∈ ℘ −cl ({x})⇒ x∈ ℘ −cl ({y}) where ℘ = p,s, 𝛼 & β. 

Let {x}⊂D where D is 𝑎 ℘ −open set in (X,T). Let ℘ −cl ({x})⊄ D. This means that (℘-cl ({x}))∩D
c
 ≠φ. Let  

y ∈ (℘ −cl ({x}))∩D
c
. Now, we have x∈ ℘ −cl ({y})⊂D

c
 and x ∉ D. but this is a contradiction . Hence, ℘ −cl 

({x})⊂D  whenever {x} ⊂D & D is ℘ -open. Consequently, {x} is a ℘g-closed set. 

 

Sufficiency:  Let in a space (X,T) , each {x} is a ℘g-closed set where x∈ X. Let x,y∈ X & x ≠ y such that x∈ 

℘ −cl ({y}) but y∉ ℘ −cl ({x}…………(1) 

This implies that       y∈ ( ℘ − 𝑐𝑙 ({𝑥}))𝑐 
⇒               {𝑦}  ⊂ ( ℘ − 𝑐𝑙 ({𝑥}))𝑐 
⇒       ℘ − 𝑐𝑙 ({𝑦})  ⊂ ( ℘ − 𝑐𝑙 ({𝑥}))

c
…………………(2)  

as {y} is a ℘g-closed set by the assumption. 

Now, {x} ⊂ ( ℘ −cl ({x}))
c
 from (1) & (2). this is an assumption contradiction which arises due to the 

acceptance of (1) and consequently , we have  

x∈ ℘ −cl ({y})⇒ y∈ ℘ −cl ({x}) ;  for every  x ≠y . Therefore, the space (X,T) is  ℘ −symmetric. 

𝐻𝑒𝑛𝑐𝑒 𝑡𝑒 𝑡𝑒𝑜𝑟𝑒𝑚. 
𝑪𝒐𝒓𝒐𝒍𝒍𝒂𝒓𝒚 (𝟒. 𝟏):  𝐼𝑓 𝑎 𝑠𝑝𝑎𝑐𝑒 (𝑋, 𝑇) 𝑖𝑠 ℘ −T1 space , then it is ℘ −symmetric, where ℘ = p,s, 𝛼 & β. 

 

Proof:  In a ℘-T1 space, singleton sets 𝑎𝑟𝑒 ℘ −closed by Theorem (1.2) , and therefore ℘g-closed by Lemma 

(4.1). By Theorem (4.1), the space (X,T) is ℘ −symmetric, where ℘ = p,s, 𝛼 & β. 

 

Remark (4.1): 

The converse of the corollary (4.1) is not necessarily true as shown in the following example: 

 Let X = {a,b,c,d,e}. T = {φ,{a},{b},{a,b},{c,d},{a,c,d},{b,c,d},(a,b,c,d},{b,c,d,e},X}. 

Then 
C

sT  ={φ,{a},{b},{e},{a,b},{a,e},{b,e},{c,d},{a,b,e},{a,c,d},{c,d,e},{b,c,d,e}, {a,c,d,e}, X} 

sT ={φ,{b},{a},{a,b},{b,e},{c,d},{a,b,e},{a,c,d},{b,c,d},{c,d,e},{a,b,c,d},{a,c,d,e}, 

{b,c,d,e},X}. 

The space (X,T)  is not s-T1 but s-symmetric. 

 

Theorem (4.2): for a topological space (X,T) , the following properties are equivalent : 

(a) (X,T) is a℘ −symmetric &  ℘ −T0 space; 

(b) (X,T) is ℘ −T1 space. 
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Proof:  (a) ⇒(b): 

Let x,y ∈ X and x ≠y. Since, (X,T) is a ℘ −T0 space, hence we may assume that x ∈ G1⊂{y}
c
 for some ℘ −

 open set G1 . Then x ∉ ℘ −cl ({y}). Consequently y ∉ ℘ −cl ({x}). There exists a ℘ −open set G2 such that y 

∈ G2⊂{x}
c
. Therefore, (X,T) is a ℘ −T1 space. 

(b) ⇒(a): 

Corollary (4.1) depicts that (X,T), being ℘ −T1 space is ℘ −symmetric . 

Remark (1.1) provides that (X,T) being ℘ −T1 space is necessarily   ℘ −T0 space. 

The above two facts together establish that (b) ⇒(a). 

Hence ,the theorem. 

 

Corollary (4.2):  If (X,T)  is ℘ −symmetric, then (X,T) is ℘ −T0 ⇔ (X,T) is ℘ −T1. 

 

Proof:  Here, „⇒” follows from Theorem (4.2) & „⇐‟ follows from Remark (1.1). 

 

II. Conclusion 
An overview of separation axioms by nearly open sets focuses its attention on the literature of ℘ −Tk( k= 

0,1,2 & ℘ = p,s, 𝛼 & β) spaces in the compact form in this paper. 

The study of ℘ −R0 &  ℘ −R1 spaces has been enunciated and the related properties are kept ready at a 

glance. The ℘- symmetry of a topological space along with example and basic results has been exhibited at one 

place. 

The future scope of the overview is to compile the literature & research concern with   ℘ −T1/2  spaces(℘ = 

p,s, α & β)   and the related fundamental properties & results are to be prepare as a ready reckoning at a glance. 
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